×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.04478v1 Announce Type: new
Abstract: Many of today's most interesting questions involve understanding and interpreting complex relationships within graph-based structures. For instance, in materials science, predicting material properties often relies on analyzing the intricate network of atomic interactions. Graph neural networks (GNNs) have emerged as a popular approach for these tasks; however, they suffer from limitations such as inefficient hardware utilization and over-smoothing. Recent advancements in neuromorphic computing offer promising solutions to these challenges. In this work, we evaluate two such neuromorphic strategies known as reservoir computing and hyperdimensional computing. We compare the performance of both approaches for bandgap classification and regression using a subset of the Materials Project dataset. Our results indicate recent advances in hyperdimensional computing can be applied effectively to better represent molecular graphs.

Click here to read this post out
ID: 842095; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: